

ONE Access Viewlet
Framework
Developer Guide

March 2021
Version 1.7

2
ONE Access Viewlet Framework – Developer Guide

Copyright Notice
Copyright © 2021, Ontario Health

This document is fully copyright protected by the owner. The owner has the exclusive right to make
copies of this document. No alterations, deletions or substitutions may be made without the prior
written consent of the owner. No part of it may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, email or any information storage and retrieval
system, without the prior written consent of the owner.

Disclaimer
This document contains proprietary and confidential information of Ontario Health. This document is
offered to you on the condition that you accept these terms and conditions without modification. Any
dissemination or distribution of this document or any copies thereof to any third party without Ontario
Health’s prior written consent is strictly prohibited. Ontario Health has prepared this document for its
own use and provides it to you for information purposes only. You understand that the information in
this document may be subject to change at any time and that Ontario Health cannot be responsible for
the completeness, currency, accuracy or applicability of this document, or any information contained in
it, to your needs or the needs of any other party. You understand and agree that:

(i) you are solely responsible for determining whether any information in this document is applicable to
your needs;

(ii) any access, use or reliance on any information in this document is at your sole and exclusive risk;

(iii) this document is provided “AS IS” without any warranties or representations of any kind, express or
implied, in fact or in law;

(iv) Ontario Health is not responsible for your use or reliance on the information in this document or any
costs associated with such use or reliance; and

(v) Ontario Health has no liability to any party for that party’s access, use or reliance on this document
or any of the information contained in it.

Trademarks
Angular® is a registered trademark of Google LLC (https://www.angular.io).

HL7®, and FHIR® are the registered trademarks of Health Level Seven International and their use of
these trademarks does not constitute an endorsement by HL7 (https://www.hl7.org).

ONE® is a registered trademark of eHealth Ontario (https://www.ehealthontario.on.ca).

OpenID® is a registered trademark of the OpenID Foundation (https://www.openid.net).

Other product names mentioned in this document may be trademarks or registered trademarks of their
respective companies and are hereby acknowledged.

3
ONE Access Viewlet Framework – Developer Guide

Document Control
The electronic version of this document is the only recognized version.

Approval History
Approver(s) Title/Department Approved Date

Revision History
Version No. Date Summary of Change Changed By

0.4 2020-02-19 First draft of document provided to OntarioMD to support
consent override for the EMR DHDR/DHIR integration
project.

Ontario Health

1.2 2020-07-30 Initial trial-for-use document submitted for open review. Ontario Health

1.3 2021-02-08 Draft publication for internal review, includes updates from
open review comments.

Ontario Health

1.4 2021-02-10 Updates to section 10.1, Appendix B and C regarding UAO
switching.

Ontario Health

1.5 2021-02-12 Updates to sections A.1 through A.4 and other revisions
from Communications.

Ontario Health

1.6 2021-02-17 Version presented to Business Technical Committee. Ontario Health

1.7 2021-03-15 Updates to section 7.0, 8.0 and Appendix C.

Final version presented for Strategic Committee approval
and publishing to corporate website.

Ontario Health

Document Sensitivity Level
Low

4
ONE Access Viewlet Framework – Developer Guide

TABLE OF CONTENTS

ONE ACCESS VIEWLET FRAMEWORK ...1

Copyright Notice .. 2

Disclaimer ... 2

Trademarks... 2

Document Control .. 3

Approval History ... 3

Revision History .. 3

Document Sensitivity Level .. 3

1.0 Introduction.. 6

2.0 Scope .. 6

3.0 Supporting Documentation .. 6

4.0 Security ... 7

5.0 Certified Web Browsers ... 7

6.0 Development Considerations and Limitations ... 7

7.0 Conceptual Flow Diagram .. 8

8.0 Use Cases Sequence Diagram .. 9

9.0 Login Use Cases .. 9

9.1 Authorization Use Case .. 9

9.2 createHubTopic Use Case .. 10

9.3 CMS OH.userLogin Use Case .. 11

10.0 Additional CMS Use Cases .. 12

10.1 CMS OH.Organization-change Use Case .. 12

10.2 CMS Patient-open Use Case ... 12

10.3 CMS OH.Patient-close Use Case .. 12

11.0 Logout Use Case ... 12

11.1 CMS userLogout Use Case ... 12

12.0 Client Application Direct Integration Use Cases .. 13

12.1 Invoke PCOI Viewlet Use Case ... 13

12.2 CMS OH.consentTargetChange Use Case .. 13

12.3 Close Viewlet Use Case .. 13

13.0 Error Handling .. 13

13.1 Client Application Errors .. 13

13.2 CMS Errors ... 13

5
ONE Access Viewlet Framework – Developer Guide

13.3 HTTP Response Codes .. 14

13.4 Response 400 Error Codes ... 14

Appendix A: Viewlet Framework Response Codes ... 16

A.1 Introduction ... 16

A.2 Events ... 16

A.3 Response Messages ... 16

A.4 Message Format... 16

A.5 Response Codes ... 17

A.5.1 Success Codes ... 17

A.5.2 Error Codes ... 17

A.5.3 Utility Codes .. 18

A.5.4 Sample Message Code .. 18

Appendix B: PCOI Viewlet Integration ... 19

B.1 Introduction ... 19

B.2 PCOI Viewlet User Interface ... 19

B.3 User Encountering DHDR Consent Block ... 21

B.4 Invoke PCOI Viewlet ... 22

B.4.1 OH.consentTargetChange Use Case ... 22

B.4.2 User Interacts with the PCOI Viewlet ... 23

B.5 User Interactions and Client Application Behaviour after Consent Override 23

Appendix C: ClinicalConnectTM and Clinical Viewer Integration .. 25

C.1 Introduction ... 25

C.2 Invoking ClinicalConnect or a Clinical Viewer ... 25

C.3 Invoke ClinicalConnect or a Clinical Viewer Use Case .. 25

C.4 Launch URL Format .. 26

6
ONE Access Viewlet Framework – Developer Guide

1.0 Introduction

The Viewlet Framework is a common framework that defines the integration platform used to build
reusable web applications, collectively referred to as ONE Access Viewlets. These Viewlets can be easily
integrated with point of service (EMR, HIS’s, etc.) and patient-portal solutions. ONE Access Viewlets
address the need for small fit-for-purpose modern web applications that are both SPAs (single-page
applications) and PWAs (progressive web applications). They can be used in a consistent modular
fashion acting together to provide clinical value. As the number of reusable ONE Access Viewlets grows,
they will be managed through a ONE Access Viewlet catalogue. This will allow clinical and patient
applications to be developed with less effort, appropriate security, and a consistent user interface while
following the same standards. Effectively, ONE Access Viewlets extend the capabilities of point of service
(PoS) and patient-portal applications with functionality that would otherwise need to be developed and
maintained, and conformance tested separately by each application.

This channel of access, consumption, and integration is enabled through the HL7® FHIR®, SMART on
FHIR®, and FHIRcast specifications and includes a set of common UI elements, libraries, and standard
services. As a result, it enables the ONE Access Viewlets to: function independently of each other or
integrate with each other; always be up-to-date with the latest patches/fixes; be able to run on desktops
and/or mobile devices; be integrated with any PoS or patient applications that adopt the Viewlet
Framework published by Ontario Health.

2.0 Scope

The initial release of this guide aims to provide system developers of PoS applications with guidance on
how to integrate with existing Ontario Health Viewlets, e.g. Provincial Consent Override Interface (PCOI)
Viewlet.

The next release of this document will expand to include the development of new Viewlets.

3.0 Supporting Documentation

The following set of supporting documents are either referred to explicitly throughout this guide or can
provide additional background information:

 Ontario Health’s ONE® ID OpenID® Connect™ specification (abbreviated to OIDC specification
from here on) for further details about ONE ID OAuth 2.0 tokens and their respective attributes
mentioned in this guide.

 The Ontario Context Management System (CMS) - FHIR specification (abbreviated to CMS
iGuide from here on) for a deep dive into the various CMS events, profiles and transactions
mentioned here along with more sample JSON messages.

 The ONE Access Gateway Transport specification (abbreviated to OAG specification from here
on) describes how client applications interact with Ontario Health’s RESTful FHIR APIs including
security with ONE ID OAuth 2.0 tokens and details on the structure of the HTTP headers
discussed here.

https://www.ehealthontario.on.ca/en/standards/view/one-id-openid-connect-specification
https://ehealthontario.on.ca/en/standards/ontario-cms
https://ehealthontario.on.ca/en/standards/one-access-gateway-transport-specification

7
ONE Access Viewlet Framework – Developer Guide

 The ONE ID Provincial Identity Federation - SAML Interface specification (abbreviated to SAML
specification from here on) as a resource to vendors of existing client applications wanting to
integrate with the Viewlet Framework and currently use ONE ID SAML tokens.

4.0 Security

The Viewlet Framework falls within the domain of Ontario Health’s EHR. Therefore, client applications
integrating with the Viewlet Framework must adhere to the relevant guidelines and principles as
outlined in the agency’s EHR Security Toolkit.

5.0 Certified Web Browsers

Whenever possible, the latest versions of modern web browsers should be used to render Viewlets. If
the latest versions cannot be used, Ontario Health recommends the following minimum versions based
on testing:

 Google Chrome with minimum version 88.0.4324.96

 Mozilla Firefox with minimum version 84.0

 Apple Safari with minimum version 13.0.5

 Microsoft Edge with minimum version 87.0.664.60

Rendering Viewlets in Chromium and Chromium-based browsers (e.g. JxBrowser) were not tested, but
Ontario Health recommends using Chromium version 84 or higher.

6.0 Development Considerations and Limitations

Vendors of client applications should account for the following considerations and limitations for the
first release of the Viewlet Framework:

 CMS v1.1 calls could be asynchronous, but the response must be tracked and error handling
must occur appropriately and is the responsibility of the client application.

 Before invoking a Viewlet such as the PCOI Viewlet outlined in Appendix B, or launching any
CMS-integrated clinical viewer such as ClinicalConnect outlined in Appendix C, all pre-requisite
calls must first complete successfully.

 The current release of CMS does not implement event notifications as defined by FHIRcast’s bi-
directional publish/subscription (pub/sub) model which recommends the use of
callback/postback URLs, webhooks and WebSockets. This is planned for the next release of CMS.

 The client application must be capable of launching a browser and performing all browser
activities, including activities across tabs if required, in the same browser session.

 Viewlets can be opened in new windows or tabs, but some Viewlets may specifically call for the
use of iFrames such as the PCOI Viewlet outlined in Appendix B.

https://ehealthontario.on.ca/en/standards/single-sign-on-patient-context-sharing-standard
https://ehealthontario.on.ca/en/support/article/security-toolkit-getting-connected/ehr-security-toolkit-getting-connected-using-one-id-or-clinicalconnect-accounts

8
ONE Access Viewlet Framework – Developer Guide

7.0 Conceptual Flow Diagram

Steps:

1. The client application logs into ONE ID OAuth 2.0.

2. The client application builds the context object by writing to CMS, via the Provider ONE Access
Gateway (OAG), over a series of events (login, patient selection, language change, etc.).

3. The Provider OAG validates the client application’s ONE ID OAuth 2.0 token and passes the events
to the CMS v1.1 server.

4.

a. The client application launches ClinicalConnectTM or another clinical viewer by passing the
following query parameters in the clinical viewer URL: authzid as inheritanceID, hub.topic as
launch, and FHIR_iss as iss, and ONE ID Identity Provider URL as SelectedIDP; or

b. The client application, via a call to an NGINX web server, launches the Viewlet in an iFrame by
passing the following query parameters in the Viewlet URL: authzid as inheritanceID, hub.topic
as launch, and FHIR_iss as iss; and then

c. The NGINX server then returns the packaged source code to the browser to be run.

5. The Viewlet or clinical viewer logs into ONE ID OAuth 2.0.

6. The Viewlet or clinical viewer calls the CMS FHIR interface, via the Provider OAG, to get the context
using the contextGUID.

9
ONE Access Viewlet Framework – Developer Guide

7. The Provider OAG validates the Viewlet or clinical viewer’s ONE ID OAuth 2.0 token and then passes
the transaction to the CMS v1.1 server.

8. The Viewlet makes a call to a line of business (LOB) via a published API on the Provider OAG.

9. The Provider OAG validates the Viewlet’s ONE ID OAuth 2.0 token and passes the call to the LOB.

10. The Viewlet lets the parent frame know it completed the transaction.

8.0 Use Cases Sequence Diagram

Each use case described in the following sections of this guide corresponds to an interaction operator in
the UML sequence diagram with the same name. It is recommended to read the use cases and sequence
diagram together. Due to the size of the diagram, it is posted online for readability and can be accessed
via the link below.

Latest Online Sequence Diagram

Tip 1: For easier reading, in the top, right-hand corner, click on the View menu then
select Participants Overlay.
Tip 2: To access the hyperlinks in the diagram, in the top right-hand corner, click on
the View menu then deselect Read Only Presentation Mode.

9.0 Login Use Cases

The client application login flow outlined in the sequence diagram covers three separate use cases which
are described here in full detail.

9.1 Authorization Use Case

1. The practitioner logs into the client application:

Case 0: The client application integrates with ONE ID SAML (e.g., to access eConsult) and ONE ID
OAuth 2.0 (e.g., to access DHDR and DHIR) with the ability to select one or more providers, also
referred to as UAOs (Under Authority Of) using a UAO picker.

Case 1: The client application integrates with ONE ID OAuth 2.0 with the ability to select one or
more UAOs using a UAO picker.

Case 2: The client application integrates with ONE ID OAuth 2.0 with a single UAO, either selected
with a UAO picker or resolved ahead of time through its own means.

2. When making an initial authentication/authorization call to ONE ID, the client application requests
an id_token and access_token to communicate with CMS v1.1.

a. For authentication, i.e. id_token, request the following scope:

 openid

b. For authorization, i.e. access_token:

i. To read and write to the CMS, request the following scopes:

https://tinyurl.com/oavfseqd

10
ONE Access Viewlet Framework – Developer Guide

 user/Context.read

 user/Context.write

ii. To query line of business FHIR APIs (e.g. PCOI, DHDR, DHIR, etc.), request LOB
scopes as needed.

iii. To read URL endpoints for PCOI, CMS and Provider OAG, request the following
scope:

 toolbar

iv. To share the client application’s access privileges with other applications, request
the access inheritance scope:

 azs

v. To select a specific UAO, pass a parameter called uao in the access token request
with the value set to OID:UPI.

3. To process the ONE ID OAuth 2.0 token response, the client application will need to extract the
following attributes from the token so they can be used in subsequent calls:

a. uao - this can be retrieved by parsing through the access_token or id_token values in the
token response.

b. authzid - to be used for authorization inheritanceID.

c. toolbar (Base64 encoded) parameters:

i. hub.url - the URL for the CMS server,

ii. pcoi_url - the URL for the PCOI Viewlet,

iii. FHIR_iss - the URL for the FHIR issuer endpoint, which is the Provider ONE Access
Gateway in this case.

Parse out all key-value pairs in the JSON object of the toolbar attribute.

For example:

1

2

3

4

5

{

 "hub.url":"https://cms.ontariohealth.on.ca/fhir4/cms",

 "pcoi_url":"https://pcoi.viewlet.ehealthontario.ca",

 "FHIR_iss":"https://providergateway.ehelthontario.ca"

}

9.2 createHubTopic Use Case

 Support for different context sessions across multiple tabs will depend on the vendor
implementation. A suggested approach will be added to the next release of this document.
Please contact the Ontario Health Architecture Program office at oh-
ds_architecture@ontariohealth.ca if there is an immediate need to implement this.

1. The client application starts writing to the CMS as soon as the user logs in with their ONE ID user
account and gets an access_token.

2. The client application needs to use the access_token for all CMS calls.

mailto:oh-ds_architecture@ontariohealth.ca
mailto:oh-ds_architecture@ontariohealth.ca

11
ONE Access Viewlet Framework – Developer Guide

3. The client application makes all calls to the CMS service through the Provider OAG and must include
the request and response headers below, which are useful for logging and debugging:

a. Request Headers

i. X-Request-Id (a UUID generated by the application calling the Provider OAG)

ii. X-Gtwy-Client-Id

iii. X-Gtwy-Client-Secret (if you are a confidential client)

b. Response Headers:

i. X-Correlation-Id

ii. X-LobTxId

4. When a user logs in for the first time, the client application first checks if the $launch ID has been
assigned a value equal to the hub.topic value in the current CMS context session. If it does not, it
makes a POST call to $hub.url/createHubTopic to create one and assigns it to the $launch ID. Sample
messages and values are described in more detail in the CMS iGuide.

For different context sessions across multiple tabs, you must have a unique $launch ID for
each tab.

9.3 CMS OH.userLogin Use Case

1. For all event calls to CMS, the client application must provide the following key-value pairs:

 id = unique transaction ID; it is strongly advised to assign the X-Request-Id from the HTTP
header as the value to this parameter

 timestamp = current time as ISO 8601-2 timestamp in UTC

 event.['hub.Event'] = <event being triggered/submitted>

 event.['hub.Topic'] = $launch (hub.topic)

2. Right after login, the client application sets the following values by submitting the OH.userLogin
event to CMS. This is to set the context with the FHIR resource values as described here in the CMS
iGuide. For example, for initial login:

 id = unique transaction ID; it is strongly advised to assign the X-Request-Id from the HTTP
header as the value to this parameter

 timestamp = current time as ISO 8601-2 timestamp in UTC

 event.['hub.Event'] = OH.userLogin

 event.['hub.Topic'] = $launch

 event.context.filter(item => item.key == “organization”)

 event.context.filter(item => item.key == “location”) only if location is different than
organization address, otherwise set to NULL

 event.context.filter(item => item.key == “practitioner”)

https://simplifier.net/guide/OntarioContextManagement/FHIRcastEventCatalog2
https://simplifier.net/guide/OntarioContextManagement/OH.userLoginEvent
https://simplifier.net/guide/OntarioContextManagement/OH.userLoginEvent

12
ONE Access Viewlet Framework – Developer Guide

 For the Practitioner FHIR resource, the Practitioner.identifier.value would be the
practitioner’s license number for the corresponding URI. If the user is not a
practitioner that has a designated license of the supported URIs, then this is skipped

 event.context.filter(item => item.key == “parameters”).resource.parameters.filter(subItem
=> subItem.name == “appLanguage”)

10.0 Additional CMS Use Cases

10.1 CMS OH.Organization-change Use Case

Pre-requisite Event: OH.userLogin.

If the user is switching UAO after the Login sequence is executed, the client application must submit
another authorization request through the ONE ID OAuth 2.0 flow, this time including uao as a
parameter to the authorization request. Once the authorization flow is complete, the application must
update the access token, the id token, and update the inheritanceID with the new authzid. The client
application then submits an OH.Organization-change event to the CMS to update the Organization
context and Location context (only if different from Organization) with the FHIR resource values as
described here in the CMS iGuide.

If any clinical viewers or Viewlets are open and rely on context, the client application or end user
must close and relaunch them when switching UAOs so that the context stays in sync.

10.2 CMS Patient-open Use Case

Pre-requisite Event: OH.userLogin.

When a user searches for and selects a patient, the client application must check if a patient is already
open in the user session or not. If the user is switching between patients, then the client application
must first issue a Patient-close event, followed by a Patient-open event. If the user opens up the patient
for the first time, only a Patient-open event to the CMS is required to set the context with the FHIR
resource values as described here in the CMS iGuide.

10.3 CMS OH.Patient-close Use Case

Pre-requisite Event: Patient-open.

If the user closes the patient in the client application, the application submits a Patient-close event to
the CMS to remove the fully populated Patient context with the FHIR resource values as described here
in the CMS iGuide.

11.0 Logout Use Case

11.1 CMS userLogout Use Case

Pre-requisite Event: OH.userLogin.

https://simplifier.net/ontariocontextmanagement/practitioner
https://simplifier.net/guide/OntarioContextManagement/OH.Organization-changeEvent
https://simplifier.net/guide/OntarioContextManagement/Patient-openEvent
https://simplifier.net/guide/OntarioContextManagement/Patient-closeEvent

13
ONE Access Viewlet Framework – Developer Guide

1. When the client application wants to close the current CMS session, because the application is

closing or any other reason, it submits a userLogout event to the CMS to indicate the user has ended
their session and to clear all the context and close the session. The usage and details of this event
can be found here in the CMS iGuide.

2. Following the userLogout event, if the client application is closing, then it must invoke the ONE ID
OAuth 2.0 logout URL as per OIDC specifications to end its ONE ID session.

12.0 Client Application Direct Integration Use Cases

12.1 Invoke PCOI Viewlet Use Case

Refer to Appendix B.

12.2 CMS OH.consentTargetChange Use Case

Refer to Appendix B.

12.3 Close Viewlet Use Case

Refer to Appendix B.

13.0 Error Handling

13.1 Client Application Errors

If the client application writing to CMS suddenly terminates or behaves abnormally, then it is suggested
to go through the Login Use Cases again, create new tokens and a new CMS session with a new
hub.topic. The lost context session is cleared from the CMS cache after 8 hours when the ONE ID session
expires. If a Viewlet, clinical viewer or ClinicalConnect is open in any tabs, it is suggested that the user
closes them before relaunching the client application so that it can get attached to the new context
session that is created.

13.2 CMS Errors

Most errors are handled by the Viewlet and any errors that occur while launching the Viewlet should be
handled by the browser’s default behaviours. Since CMS is directly called by the client application, any
CMS errors will need to be handled by the application. Errors returned from CMS will follow the
structure of the example below. It lists the status, HTTP error code as code, and details of the initial call
such as hub.topic, hub.event, id and lob.id. It then lists the reason for the error, with the name, a
message and a list of CMS specific error codes in the table blow. The errorCodes is an array because it
could have multiple issues.

In the example below, there is a CMS_ERROR_INVALID_PUBLICATION code because the data trying to be
published is incorrect; then there is another code CMS_ERROR_INVALID_HUBEVENT, which is more in
depth letting the caller know that the hub.event was invalid (patient-ope instead of patient.open).

https://simplifier.net/guide/OntarioContextManagement/userLogoutEvent

14
ONE Access Viewlet Framework – Developer Guide

To match the CMS error to the original call that was sent, the X-Request-Id in the client application’s
original CMS call should be the same as the X-Correlation-Id in the CMS error response.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

{

 "status": "Invalid",

 "code": 400,

 "id": "6b22f6a1-4e13-4043-9d2e-62622c78b7e7",

 "hub.topic": "D8584B7C5F3740BE960FBC20FA784613",

 "hub.event": "patient-ope",

 "lob.id": "6411817C08AC46B1AE72F605723F4D2C",

 "reason": {

 "name": "ValidationError",

 "message": "publication information is invalid",

 "errorCodes": [

 "CMS_ERROR_INVALID_PUBLICATION",

 "CMS_ERROR_INVALID_HUBEVENT"

],

 "hasErrorCodes": true

 },

 "success": false,

 "failure": true,

 "errorCodes": [

 "CMS_ERROR_INVALID_PUBLICATION",

 "CMS_ERROR_INVALID_HUBEVENT"

],

 "hasReason": true,

 "hasErrorCodes": true

}

13.3 HTTP Response Codes

Response Code Description Notes

200 OK

204 No Content

400 Bad Request Resource could not be parsed or failed basic FHIR validation rules (or
multiple matches were found for the same request)

404 Not Found Resource type not supported, or not a FHIR endpoint

405 Method Not Allowed The resource did not exist prior to the update, and the server does not
allow client defined ids

500 Internal Server Error

13.4 Response 400 Error Codes

Error Code Description

CMS_ERROR_SYSTEM Unexpected and untracked error

CMS_ERROR_CACHE Cache operation error

CMS_ERROR_EVENT Event handling error

CMS_ERROR_PARSE JSON string parsing error

CMS_ERROR_STRINGIFY JSON object stringify error

15
ONE Access Viewlet Framework – Developer Guide

Error Code Description

CMS_ERROR_SERIALIZE TypeScript object to JSON object serialization error

CMS_ERROR_DESERIALIZE JSON object to TypeScript object deserialization error

CMS_ERROR_CONTEXT_SYNC Session context sync error

CMS_ERROR_REQUIRED_SESSION Session context is required error

CMS_ERROR_REQUIRED_ORGANIZATION Session context organization resource is required

CMS_ERROR_REQUIRED_PRACTITIONER Session context practitioner resource is required

CMS_ERROR_INVALID_PRACTITIONER Session context practitioner resource is invalid

CMS_ERROR_REQUIRED_PATIENT Session context patient resource is required

CMS_ERROR_INVALID_PATIENT Session context patient resource is invalid

CMS_ERROR_REQUIRED_PARAMETERS Session context parameters resource is required

CMS_ERROR_REQUIRED_CONTEXT FHIRcast publication request context array is required

CMS_ERROR_INVALID_CONTEXT FHIRcast publication request context array is invalid

CMS_ERROR_REQUIRED_PUBLICATION FHIRcast publication request is required

CMS_ERROR_INVALID_PUBLICATION FHIRcast publication request is invalid

ERROR_REQUIRED_TIMESTAMP FHIRcast publication request timestamp element is required

ERROR_REQUIRED_PUBLICATION_ID FHIRcast publication request id element is required

ERROR_REQUIRED_EVENT FHIRcast publication request event element is required

ERROR_REQUIRED_HUBTOPIC FHIRcast publication request hubtopic element is required

CMS_ERROR_REQUIRED_HUBEVENT FHIRcast publication request hubevent element is required

CMS_ERROR_INVALID_HUBEVENT FHIRcast publication request hubevent element is invalid

CMS_ERROR_REQUIRED_CONTEXT_KEY FHIRcast publication request context key element is required

CMS_ERROR_REQUIRED_CONTEXT_RESOURCE FHIRcast publication request context resource element is required

CMS_ERROR_REQUIRED_EVENT_RESOURCE FHIRcast event must have all required FHIR resources

CMS_ERROR_INVALID_EVENT_RESOURCE FHIRcast event must have only allowed FHIR resources

CMS_ERROR_REQUIRED_EVENT_PARAMETER FHIRcast event must have all required FHIR parameters

CMS_ERROR_INVALID_EVENT_PARAMETER FHIRcast event must have only allowed FHIR parameters

CMS_ERROR_INVALID_RESOURCE FHIR resource is invalid

CMS_ERROR_REQUIRED_HEADER HTTP header is required

CMS_ERROR_INVALID_HEADER HTTP header is invalid

CMS_ERROR_REQUIRED_SUB Authorization header sub element is required

CMS_ERROR_REQUIRED_AZP Authorization header azp element is required

CMS_ERROR_REQUIRED_UAO Authorization header uao element is required

CMS_ERROR_REQUIRED_UAO_NAME Authorization header uao name element is required

CMS_ERROR_REQUIRED_UAO_TYPE Authorization header uao type element is required

Errors generated as the result of ONE ID OAuth 2.0 flows, LOB flows, or Provider OAG calls should be
handled according to those specifications.

16
ONE Access Viewlet Framework – Developer Guide

Appendix A: Viewlet Framework Response
Codes

A.1 Introduction

Viewlets need to return a response code back to the calling application or may need to broadcast a
response to multiple applications running in the same session. This appendix will cover current use cases
as required by the PCOI Viewlet and will expand as more Viewlets are developed.

A.2 Events

For the initial implementation of the PCOI Viewlet, its responses will be based on events.

An event could be sent through a combination of different channels or through just one channel such as
WebRTC, WebSockets, FHIRcast or web browser. For PCOI, the initial event handling is done in the web
browser and uses the browser’s event listeners and handlers through window.postMessage.

A.3 Response Messages

The Viewlet responds with an object containing three major sections: errors, successes and utility. Errors
and successes are codes returned from a Viewlet's business logic and are also arrays as a single Viewlet
can make calls to multiple lines of business (LOB) downstream.

It is possible one or more of the downstream calls can fail while one or more are successful. When an
end user encounters a patient record with consent directives across multiple LOBs (e.g. DHDR and OLIS),
they can choose to override the consent on all LOBs through the PCOI Viewlet interface. The PCOI
Viewlet calls the PCOI microservice through the Provider ONE Access Gateway PCOI API and the
microservice would in turn call each of the requested LOBs separately. Since two different LOBs were
called, there is a possibility one could return a success, such as DHDR and the other a failure, such as
OLIS. Each of the success/error objects will have the following fields:

 code - response code from the call.

 microservice - the LOB that this specific success or failure was for.

 reason - reason for the failure.

 lobTxId - key-value pairs of transaction IDs for all the downstream LOBs called by the microservice
that can be used for troubleshooting.

 utility - specifies an array of codes to be sent by the Viewlet directly back to the parent application.
For example, PCOI_CONSENT_CANCELLED, which requires the parent application to close the PCOI
iFrame.

A.4 Message Format

17
ONE Access Viewlet Framework – Developer Guide

The message will always be a JSON object with the following format:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

{

 "appVersion": "<version Number>",

 "errors": [{ //(optional)

 "code": [...],

 "microService": "name of the microservice or external API called",

 "reason": "response code and the short message",

 "lobTxId": {"lobkey":"txId", ...} //contains all the LOB transaction IDs that can be used for troubleshooting.

 }],

 "successes": [{ //(optional)

 "code": [...],

 "microService": "name of the microservice or external API called",

 "reason": "response code and the short message",

 "lobTxId": {"lobkey":"txId", ...} //contains all the LOB transaction IDs that can be used for troubleshooting.

 }],

 "utility": {

 "code": [...]

 }

}

A.5 Response Codes

A.5.1 Success Codes

The PCOI_CONSENT_SUCCESS_01 success code confirms the call to the PCOI microservice completed
successfully but does not confirm if the call to the DHDR LOB was successful.

The 201 and PCOI_CONSENT_SUCCESS_02 consent codes confirm the call to the DHDR LOB was
successful.

Code Reason Microservice

PCOI_CONSENT_SUCCESS_01 PCOI Transaction(s) Successful PCOI

PCOI_CONSENT_SUCCESS_02 DHDR Transaction Successful DHDR

A.5.2 Error Codes

Code Reason Microservice

PCOI_CORE_MISSING_HEADER_KEY Missing HTTP Header PCOI

PCOI_CORE_MISSING_HEADER_VALUE_01 Value must be 'application/fhir+json' PCOI

PCOI_CORE_MISSING_BODY_VALUE Invalid value: <VALUE> PCOI

PCOI_CORE_VALIDATION_01 Token RID does not match Practitioner identifier PCOI

PCOI_CORE_VALIDATION_03 Value does not match Enumerated list PCOI

PCOI_CORE_UNHANDLED Internal Server Error PCOI

PCOI_CONSENT_VALIDATION_01 No valid override target specified PCOI

PCOI_CONSENT_VALIDATION_02 Consent performer is not Patient or RelatedPerson PCOI

18
ONE Access Viewlet Framework – Developer Guide

Code Reason Microservice

PCOI_CONSENT_TIMEOUT Downstream system did not return timely response PCOI

PCOI_CONSENT_DHIR_OOS DHIR override not available yet DHIR

PCOI_CONSENT_UNHANDLED Internal Server Error PCOI

PCOI_CORE_MISSING_HEADER_VALUE_02 Value must be 'en' or 'fr' PCOI

A.5.3 Utility Codes

Code Reason Microservice

PCOI_CONSENT_CANCELLED N/A N/A

A.5.4 Sample Message Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

{

 "appVersion": "1.0",

 "errors": [{

 "code": ["###", "###"],

 "microService": "PCOI",

 "reason": "501 DHIR Not In Service",

 "lobTxId": {"DHDR":"2ef028a9-645b-48f7-9c58-a39f2ce8fa1c","PCOI":"973c0760-d630-4059-8ccb-

13fa02e9356c"}

 },

 {

 "code": ["###", "###"],

 "microService": "PDF",

 "reason": "500 Internal Server Error",

 "lobTxId": {"DHDR":"2ef028a9-645b-48f7-9c58-a39f2ce8fa1c","PCOI":"973c0760-d630-4059-8ccb-

13fa02e9356c"}

 }],

 "successes": [

 {

 "code": ["PCOI_CONSENT_SUCCESS_02", "201"],

 "microService": "DHDR",

 "reason": "success",

 "lobTxId": {"DHDR":"2ef028a9-645b-48f7-9c58-a39f2ce8fa1c","PCOI":"973c0760-d630-4059-8ccb-

13fa02e9356c"}

 },

 {

 "code": ["PCOI_CONSENT_SUCCESS_01"],

 "microService": "PCOI",

 "reason": "success",

 "lobTxId": {"DHDR":"2ef028a9-645b-48f7-9c58-a39f2ce8fa1c","PCOI":"973c0760-d630-4059-8ccb-

13fa02e9356c"}

 }

],

 "utility":{

 "code": ["PCOI_CONSENT_CANCELLED"]

 }

}

19
ONE Access Viewlet Framework – Developer Guide

Appendix B: PCOI Viewlet Integration

B.1 Introduction

The Provincial Consent Override Interface (PCOI) is a turnkey EHR consent override service offered by
Ontario Health to trusted partners. Upon completion of one-time integration work, PoS applications will
automatically gain access to UI improvements and additional LOB offerings as they are released by the
project team.

The first release of PCOI service supports the temporary override of consent directives on patient
records in the Digital Health Drug Repository (DHDR). It is also ready to support Digital Health
Immunization Repository (DHIR) consent overrides when the line of business implements it, which
currently it has not.

The PCOI Viewlet is a single-page application (SPA) developed by Ontario Health, written in Angular®
and served securely over HTTPS (using a public Entrust certificate) by scalable and containerized NGINX
servers hosted on the agency’s on-premises Red Hat OpenShift platform. Other Ontario Health Viewlets
currently in development and planned for future development are intended to follow this model.

B.2 PCOI Viewlet User Interface

The end user interactions with the PCOI Viewlet are briefly described here to help client application
developers who are integrating their systems with it.

Step 1: Review Patient and Practitioner information and select the type of records which you would like
to override.

Step 2: Select who is consenting to the unblock. If it is a Substitute Decision Maker (SDM), additional
information will be required: first name, last name, and relationship to the patient.

20
ONE Access Viewlet Framework – Developer Guide

Step 3: Review and follow the steps provided in the “Next Steps” section.

Step 4 (specific to the DHDR LOB): Print the form and have the patient sign the form.

Step 5: Verify the consent form is printed and signed then click the checkbox.

21
ONE Access Viewlet Framework – Developer Guide

Step 6: Click the Unblock Records button and receive the success message back from the PCOI service.

 It is recommended to follow the Conceptual Flow Diagram and Use Cases Sequence Diagram
when reading about the client application interactions with the PCOI Viewlet described in this
appendix.

B.3 User Encountering DHDR Consent Block

1. The client application queries the DHDR FHIR API on the Provider Gateway with the ONE ID OAuth

2.0 token. The DHDR response returns no records due to the presence of an active consent directive
identified by the specific severity and code key-value pairs shown in the sample JSON object below.
The client application stores the initial DHDR query to resubmit later when the consent override
flow completes.

1

2

3

4

5

6

7

8

{

 "severity": "warning",

 "code": "suppressed",

 "details": {

 "text": "Some information is blocked. Additional information may be

 available using the Temporary Consent Unblock Access Protocol"

 }

}

22
ONE Access Viewlet Framework – Developer Guide

2. Once confirmed that there is a consent block on the DHDR results, the client application would
display a message to the end user along with an override button that they would click on to launch
the PCOI Viewlet.

B.4 Invoke PCOI Viewlet

Prerequisite: Some applications will choose not to write CMS events as they occur, but rather just-in-
time (JIT) before invoking the PCOI Viewlet. In this case, the client application must ensure all Login Use
Cases (authorization, createHubTopic, OH.userLogin) and Patient-open events are completed first
before initiating the following steps:

For client applications that support switching UAOs within the same login session: if the PCOI
Viewlet is open, the client application must close and relaunch it after the UAO switch to ensure
context stays in sync.

B.4.1 OH.consentTargetChange Use Case

1. When the user clicks on the override button, the client application submits an

OH.consentTargetChange event to the CMS. This is to set the context with the CMS to indicate
which LOB(s) have been triggered for an override. Consider the following when developing:

 The first release of PCOI only supports the DHDR LOB.

 When starting the consent override invocation process, send all EHR-sourced consent flags to
the CMS.

 As additional LOBs are added to future releases of PCOI, the client application must be able to
handle the list of LOBs dynamically. This is to avoid additional code changes in the future when
new LOBs are added.

 Further details on the usage of this event can be found here in the CMS iGuide.

2. The client application code will launch the PCOI URL, which was previously parsed from toolbar and
saved as $PCOI_URL, in an iFrame in the following matter:

 The client application will create an iFrame as a modal window. It is recommended to use
focus/modal so the user can only interact with this window and not click outside of it.

 The iFrame will be opened with restrictions by adding the sandbox attribute to it with the
following values: allow-forms, allow-scripts, allow-same-origin and allow-modals.

 As shown in Step 4b of the Conceptual Flow Diagram, the client application will launch the PCOI
Viewlet with the proper URL, which includes:

o hub.topic as a query parameter named launch;

o FHIR_iss as a query parameter named iss; and

o authzid as a query parameter named inheritanceID.

o Sample code:

1

2

3

<iframe id="pcoi-frame" [src]="https://pcoi.ecp.ehealthontario.ca

 ?launch=...&iss=...&inheritanceID=..." sandbox="allow-forms allow-scripts allow-same-origin

allow-modals" ></iframe>

https://simplifier.net/guide/OntarioContextManagement/OH.consentTargetChangeEvent

23
ONE Access Viewlet Framework – Developer Guide

 The client application will have a window listener implemented to listen to a
window.postMessage response from the iFrame it just launched. The message will come back in
the Viewlet Framework defined response format as discussed in Appendix A.

B.4.2 User Interacts with the PCOI Viewlet

1. The PCOI Viewlet takes advantage of single sign-on (SSO) and the browser session. This allows the

PCOI Viewlet to pick up and re-use the login session (authentication). It can also make its own
authorization calls and process the resulting ONE ID OAuth 2.0 access_token.

2. The PCOI Viewlet makes use of the CMS to get the context of the current user session. The
resources that come back are all FHIR resources and FHIR extensions. The CMS GET call syntax,
usage and FHIR resource values are described in more detail in the CMS iGuide.

3. The end user interacting with the PCOI Viewlet is asked to: answer specific questions regarding the
consent override request, print the form and submit the request. Upon submitting, the Viewlet
makes calls to the PCOI FHIR API and processes the request against every LOB that was indicated.

4. Once the override is complete, the PCOI Viewlet will display a message to the end user with the
results. As more LOBs are added to the PCOI service, results may indicate that an override
succeeded for some while failed for others depending on the downstream responses from each LOB.
Upon dismissing the message and closing the PCOI Viewlet, the Viewlet sends a notification message
to the parent window (through window.postMessage) with the result in JSON format as outlined in
Appendix A.

5. If there is any other reason the iFrame closes and there is no message received from the PCOI
Viewlet, then assume a serious error occurred and the consent override did not go through.
Approach this as a cancelled transaction and restart the flow with the initial LOB call that triggered
consent override. It is possible that the consent override processed successfully, and the unexpected
error came after the fact, so in this case, the consent override would not be triggered. Therefore, it
is advised the client application attempt to re-load the LOB data and if the record still has a consent
block, then prompt the user to override again.

6. If the user manages to click outside of the PCOI Viewlet window, the client application should not
allow any further user interactions until the PCOI Viewlet closes.

B.5 User Interactions and Client Application Behaviour after Consent
Override

For the consent override requests that completed successfully, the LOB query that initially triggered the
consent block message(s) should be re-submitted. It is up to the client application to decide if the re-
submission will happen automatically or if the user should be prompted to re-submit the query. After re-
submission of the LOB query, a full response message would be returned with the clinical details. The
returned FHIR resource includes an additional attribute that would indicate that this response has been
provided because of a consent override. This should be returned by the client application to the end
user for their awareness.

A sample response from DHDR:

https://simplifier.net/guide/OntarioContextManagement/TransactionQueryforCurrentContext

24
ONE Access Viewlet Framework – Developer Guide

1

2

3

4

5

6

7

8

9

10

11

12

13

{

 "severity": "information",

 "code": "informational",

 "details": {

 "coding": [

 {

 "code": "CONSENT_TEMP_UNBLOCK"

 }

],

 "text": "Patient has temporarily unblocked access to view and

 use drug information."

 }

}

25
ONE Access Viewlet Framework – Developer Guide

Appendix C: ClinicalConnectTM and Clinical
Viewer Integration

C.1 Introduction

Some of today’s EMRs and HISs can launch a provincial clinical viewer such as ClinicalConnectTM or
ConnectingOntario through one click of a button. This is achieved by using ONE ID single sign-on (SSO)
and some mechanism for patient context. A clinician using a local EMR can easily access one of these
clinical viewers from within the application to retrieve a broader set of data from the patient’s EHR
assisting them in clinical decisions and in turn improving patient outcomes.

The current release of the Viewlet Framework supports integration and one-click launch of
ClinicalConnect and other clinical viewers using ONE ID OAuth 2.0 for SSO and Ontario Health’s Context
Management System (CMS) for patient context.

A future release of Viewlet Framework and CMS is expected to additionally support ConnectingOntario
and other clinical viewers that require the use of WebRTC, WebSockets, webhooks and
postback/callback URLs as outlined in the FHIRcast specification.

C.2 Invoking ClinicalConnect or a Clinical Viewer

Pre-requisite: Some applications will choose not to write CMS events as they occur, but rather just-in-
time (JIT) before invoking ClinicalConnect or another clinical viewer. In this case, the client application
must ensure all Login Use Cases (authorization, createHubTopic, OH.userLogin) and Patient-open events
are completed first before initiating the use case below.

 It is recommended to follow the Conceptual Flow Diagram and Use Cases Sequence Diagram when
reading about the client application interactions with ClinicalConnect or another clinical viewer as
described in this appendix.

C.3 Invoke ClinicalConnect or a Clinical Viewer Use Case

For client applications that support switching UAOs within the same login session: if
ClinicalConnect or the clinical viewer is open, the client application or end user must close and
relaunch it after the UAO switch to ensure context stays in sync.

As shown in Step 4b of the Conceptual Flow Diagram, the client application will launch ClinicalConnect
or another clinical viewer with the proper URL, which includes:

 hub.topic as a query parameter named launch

 FHIR_iss as a query parameter named iss

 authzid as a query parameter named inheritanceID

26
ONE Access Viewlet Framework – Developer Guide

 ONE ID Identity Provider URL, https://federation.ehealthontario.ca/fed/idp, as a query
parameter named SelectedIDP

C.4 Launch URL Format

1 https://my.viewer.ca?launch=...&iss=...&inheritanceID=...&SelectedIDP=https://federation.ehealthontario.ca/fe

d/idp

